the NJ Center for Fertility and Reproductive Medicine

NJ Center for Fertility and Reproductive Medicine New Video Website
NJ Center for Fertility and Reproductive Medicine - Infertility Tutorials
Operative Hystoscopy Guidelines


abnormal uterine bleeding


recurrent pregnancy loss

abnormal hysterosalpingogram revealing intrauterine adhesions, polyps, fibroids, septum

possible intrauterine foreign bodies



heavy uterine bleeding

pelvic inflammatory disease

cervical malignancy

recent uterine perforation


maximum recommended intrauterine operating pressure is 150 mm Hg

intrauterine pressure is a function of inflow pressure and outflow pressure

inflow pressure may be produced by gravity, pressured cuffs with (pressure) gauges, or approved pumps


Group A: Isotonic Ionic Solutions (Normal Saline, Ringer's Lactate)

Group B: 5% Dextrose in Water

Group C: 1.5% Glycine, Sorbitol, Cytal

Group D: Hyskon (32% Dextran 70)


1) it is the role of the circulating nurse to maintain a flow sheet recording inflow and outflow of hysteroscopic media during the case

2) for Groups A, B and C the inflow and outflow must be estimated for every 500 cc of fluid used and measured at the conclusion of each bag of distending media

3) for Group D the inflow and outflow must be measured for every 100 cc of fluid used

4) the operating surgeon will be informed of fluid balance status as it is recorded on the flow sheet

5) spillage should be avoided and quantitated whenever a significant spill occurs

6) use of a table drape to collect excess fluid for accurate recording of fluid output is required


The recommended volume of input to output discrepancy at which point the surgeon must assess serum electrolytes (especially sodium concentration)* is

Group A: 1 liter

Group B: 1 liter

Group C: 1 liter

Group D: 250 mL

Once these volumes of discrepancy have been reached, serum electrolytes must be obtained and the operating surgeon has the option of:

a) terminating the case

b) awaiting the results of the electrolyte levels and proceeding accordingly

c) administering Lasix IV and judiciously proceeding with the case until the results are available


  1. The volumes that are recommended in this section are not based on established "standards of care" since such standards have not yet been clearly formalized. For example, I use 1 Liter as a cut off for D5W while some of the world's leading hysteroscopic surgeons use 3 Liters. There is no established limit for the volume of D5W that can safely be given as an IV solution being directly infused into the circulation of a healthy person. I have found no reports of major morbidity associated with the use of D5W in the literature.
  2. Additional patient assessment following a large volume discrepancy between input and output may immediately involve determination of serum electrolytes. If a significant time has passed since the (presumed) absorption of fluid, other clinical parameters (if available) may become more informative (evidence of tissue edema, an increase in cardiac output associated with volume overload, change in pulse oximetry or ventilation parameters, change in patient temperature if room temperature fluid is used)

I use a resectoscope with continuous flow and a loop electrode to perform most of my hysteroscopic surgery. I have not found a pumping system for distending media that is sufficiently accurate, rapid in response (so as to maintain a constant pressure), affordable, and easy to use. Many pumps are available and as this technology develops I anticipate that a great pumping system will become available. At present, I use a simple system of placing a blood pressure cuff around each one liter bag of D5W solution to be used and apply 150 mm Hg pressure (as measured on a gauge attached to the cuff) to the pressure cuff. This is connected to the inflow port on the resectoscope and flow is then adjustable using a stop cock on this port. Outflow from the resectoscope is via a tubing that connects directly to a suction canister under full wall suction. The outflow port also has a stopcock that can be used to adjust the outflow.

The circulating nurse's primary responsibility during the operative hysteroscopy is to maintain pressure on the pressure cuff and watch the inflow and outflow balance. The nurse might appropriately report this balance to the surgeon and anesthesiologist every 15 minutes or whenever there is a significant volume of use (say 500cc).

The resectoscope's monopolar electrocautery loop is attached to an electrical generator with variable power (wattage) settings. For any given power setting selected, there are also various blends of cutting or coagulation that can be chosen. I typically use blend 1 which applies current 80% of the time and gives just a little coagulation as compared to pure cutting. For most resectoscopic use, I use 50-80 Watts on blend 1 and coagulate bleeders (if not initially controlled with the blend 1 settings) using 50 Watts at pure coagulation.

Once the hysteroscopic portion of the case is completed, I request a final tabulation of inflow and outflow volumes for the distending media.

I direct my attention to the laparoscopy once the hysteroscopy is complete. A uterine manipulator is placed through the cervix, I typically invert the umbilicus and insert a Verres needle through this site (while holding up the umbilicus). Alternative sites for Verres needle insertion (rarely used) include the left infracostal midclavicular line or the left periumbilical midclavicular line. Insufflation of the abdomen with CO2 gas so as to create a pneumoperitoneum is accomplished after "confirming the proper placement" of the Verres needle. Note that absolute certainty of placement of the Verres needle is not possible given the blind nature of its entry. Many of the laparoscopic injuries that occur do so at the time of Verres needle insertion. Failure to achieve an adequate pneumoperitoneum is the most common reason for procedural failure.

Once the pneumoperitoneum is created, the Verres needle is replaced by a trocar and sleeve. Again, the trocar insertion is blind and the direction of insertion is typically towards the hollow of the sacrum. The diameter of the umbilical (main) trocar is 10-12 mm so that this instrument can cause considerable injury if not placed properly and atraumatically into the abdominal cavity. The presence of adhesions (scar) that elevates the bowel to the anterior abdominal wall is a consistent source of concern for laparoscopic surgeons. I always try to enter the trocar through the abdominal wall (while holding the inverted umbilicus up with clamps) so that the tip of the trocar and its outer sheath are just inside the inner abdominal wall and then confirm an atraumatic entry with the laparoscope before going on.

If abundant adhesions are anticipated such that the surgeon believes that the complication rate with the blind Verres needle and trocar insertion is unacceptably high, then "open laparoscopy" may be chosen. Hasson introduced this technique in 1971, in which the direct insertion of the trocar without the creation of a prior pneumoperitoneum is accomplished by performing a cut down under direct observation of the layers of the abdominal wall. Suture holds the layers of the inner abdominal wall (fascia and peritoneum) to the trocar sleeve to prevent the release of gas through the incision site during the case. Extreme care must be exercised in making the peritoneal incision since bowel injury to adherent bowel may occur under direct observation as well.

Accessory trocar sites are usually required during the laparoscopic case. Typically I use two additional sites for placement of 5 mm (or uncommonly 10 mm) trocars in the suprapubic midline and left lower quadrant. All accessory trocars have the advantage of being able to be inserted under direct observation so injury is less common. One injury associated with placement of the accessory trocars is laceration of the deep inferior epigastric vessels (which may be difficult to see either directly or via transillumination). Injury to the inferior epigastric vessels can be consistently avoided by placement of the additional trocars either lateral to the internal inguinal ring or medial to the umbilical ligaments (two structures that are usually easy to identify under direct laparoscopic observation).

Tools that are selected for the performance of the laparoscopic surgery should allow the surgeon to minimize postoperative adhesion formation. The surgical principles as discussed above are very important in terms of achieving the desired outcome. Gentle tissue handling during laparoscopy takes a great deal of time to develop. Avoidance of bleeding with gentle tissue handling is important and so is careful hemostasis using (selective) bipolar cautery. Continuous irrigation and aspiration of the tissues to remove char and minimize drying should be second nature to the laparoscopic infertility surgeon. Use of cutting instruments that minimize lateral tissue damage is also a primary concern.

Once the case has been completed, the instruments are removed from the abdomen allowing for the efflux of CO2 gas. I usually take an additional 5 or so minutes to move the abdominal wall and contents about with only one remaining trocar sleeve in place to try to allow any trapped gas to escape. Incisions are closed with subcuticular stitches so as to avoid cosmetically unpleasant "railroad" type skin scars. The fascia is closed on any incision in the fascia greater than 5 mm.

In the immediate postoperative recovery time period, common problems include

  • nausea and vomiting, most likely related to the CO2 gas or the narcotic pain medications used perioperatively. Zofran is often the most effective anti emetic agent for post laparoscopic vomiting. The nausea and vomiting does not typically persist for more than 12 hours postop.
  • shoulder pain due to retained CO2 gas, which if trapped under the diaphragm (at base of the lungs) causes irritation of the phrenic nerve to cause the sensation of shoulder pain. Lying on one's abdomen with a pillow under the hips and lower abdomen (or the knee chest position) may allow the CO2 gas to recollect in the pelvis rather than under the lungs and reduce this discomfort.
  • subcutaneous crepitance (crackling) under the skin over the abdomen and extending superiorly to the chest and neck or inferiorly to the buttocks and thighs is typically a minor complication due to escape of the gas into the abdominal wall. A rare patient develop a very low blood pressure (not related to blood loss) and usually responds immediately to a bolus of IV solution.
  • incisional pain is usually mild but the internal (visceral) pain after surgery can be intense and may require narcotics or anti inflammatory agents. Reportedly a heating pad applied to the abdomen may also be helpful.
  • if a large volume of fluid is left in the abdomen at the conclusion of the case (I rarely leave this fluid here but some surgeons do this as a routine) then leakage through the incision sites is common for up to 2 days.
  • the surgeon should be called if there is a fever (greater than 100 degrees) or chills, heavy or prolonged vaginal bleeding, heat or swelling of the incision sites, frequency or burning on urination, severe pelvic pain, persistent nausea or vomiting, faintness or dizziness, inability to spontaneously urinate.
  • postoperative urinary retention occurs more often in cases that last longer than 2 hours. If the patient is not able to void within 4-5 hours postop (and after removal of the foley catheter) then she should be straight catheterized for the residual volume of urine and she should try to void spontaneously once again. I do not allow my patients to go home until either they can void spontaneously or they have an indwelling foley catheter placed (for about 1 day).


Eric Daiter, M.D. - Edison, NJ - E-Mail: - Phone: (908)226-0250

Design & Hosting by BLAZE inter.NET